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Inflation in Theory Land

Better observations have 
theorists (re)asking:

(1) What particle physics 
is behind inflation?
(2) Is inflation right? 
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What has changed?

Promise of better, and new, 
observations; realization that we can 
extract much more information 
Shift in consensus about what is 
‘natural’ or likely for inflation
New calculational tools to test the 
framework itself
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I. Review of the 
standard story
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The Universe Observed
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Questions Inflation is 
supposed to answer:

• Why and How is the observed universe
Nearly homogeneous on current 
horizon scales
Nearly flat
Filled with small density 
inhomogeneities at an early time
Cooling from a high temperature
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The traditional ‘how’:
A Scalar Inflaton

Classical motion of 
inflaton drives 
uniform accelerated 
expansion

Albrecht, Steinhardt, 
Linde
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Describing the 
Fluctuations

Grav. Potential
�Φ(k1)Φ(k2)� ∝ δ3

D(k1 + k2)k−3PΦ(k)
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Describing the 
Fluctuations

Grav. Potential
�Φ(k1)Φ(k2)� ∝ δ3

D(k1 + k2)k−3PΦ(k)

Amplitude Spectral index
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Describing the 
Fluctuations

Grav. Potential
�Φ(k1)Φ(k2)� ∝ δ3

D(k1 + k2)k−3PΦ(k)

Amplitude Spectral index

O(10−9)
ns − 1 ≈ −0.04

PΦ = A0

�
k

k0

�ns−1
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Consistent with 
Observations

WMAP 7
Komatsu et al 

1001.4538
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The Observed feature:
An approx symmetry

• Fluctuations are nearly scale invariant

0.001 Mpc−1 < k < O(1) Mpc−1
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The Observed feature:
An approx symmetry

• Fluctuations are nearly scale invariant

The potential is nearly flat (simplest 
scenario)
The space is nearly, but not exactly 
de Sitter space (positive cosmological 
constant)
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The Observed feature:
An approx symmetry

• Fluctuations are nearly scale invariant

The potential is nearly flat (simplest 
scenario)
The space is nearly, but not exactly 
de Sitter space (positive cosmological 
constant)

0.001 Mpc−1 < k < O(1) Mpc−1

Near time-translation invariance
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So, what’s the problem?
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Observational 
landscape

1. CMB: Planck (now; 2013)
CMBPol ( > 2020?)
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Observational 
landscape

1. CMB: 

Primordial gravitational waves
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CMBPol ( > 2020?)
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Observational 
landscape

1. CMB: 

Primordial gravitational waves
Balloons: SPIDER, EBEX (2011/2012)

Planck (now; 2013)
CMBPol ( > 2020?)

2. Large Scale Structure Surveys:

Carbone, Verde, Matarrese

HETDEX

Thursday, October 27, 2011



Interactions and 
non-Gaussianity

Evidence of inflation from 
the scalar sector?
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Vanilla Framework:

• One field does it all:
• Classical source for inflationary 

background
• Inevitable Quantum fluctuations  

primordial perturbations
• Gravitational waves, red tilt

Ḣ < 0

Thursday, October 27, 2011
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But what Context?

Single field: doesn’t (can’t!) mean no other 
fields are in there somewhere
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But what Context?

• Only one degree of freedom?
• No physics between H and MP?
• Pre-inflationary state?
• Reheating?

Single field: doesn’t (can’t!) mean no other 
fields are in there somewhere
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The Inflaton, “in a 
vacuum”

Simplest model: V (φ) =
1
2
m2φ2

r ≈ 0.1

V 1/4 ∼ 1016 GeV
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The Inflaton, “in a 
vacuum”

Simplest model: V (φ) =
1
2
m2φ2

r ≈ 0.1

Should we take this seriously? 
Is it better than assuming initial conditions?

V 1/4 ∼ 1016 GeV
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The Inflaton, “in a 
vacuum”

Simplest model: V (φ) =
1
2
m2φ2

r ≈ 0.1

Should we take this seriously? 
Is it better than assuming initial conditions?

⇒ Look for field in particle spectrum at 
high energies

V 1/4 ∼ 1016 GeV
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Lessons from Inflation 
in sugra, strings, etc

• Hard to get flat potentials (“right” 
inflaton mass)

• Lots of other fields generically in the 
game

• Other scales: SUSY breaking scale, 
string scale, geometric scales, etc

• Suggestions for symmetries and 
interactions that preserve them

Lots of 
Moving 
Parts!

Thursday, October 27, 2011
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Beyond the power 
spectrum

• Non-Gaussianity: any higher order 
connected correlation different from zero

• Interactions:
 

Gravity
 Self-interactions
 Multiple fields

S = S0 + S2 + S3 + . . .

} Qualitatively 
distinguishable!

Thursday, October 27, 2011
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Difficulty as an 
opportunity...

Interactions           Non-Gaussianity⇒
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Difficulty as an 
opportunity...

Interactions           Non-Gaussianity⇒
N-point functions beyond the power 
spectrum
N-point functions likely have some structure

Amplitude of new correlations related to 
some scale of new physics

H < M < Mp

Thursday, October 27, 2011
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Why Interactions give 
non-Gaussianity
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Why Interactions give 
non-Gaussianity
Quadratic action/Free Field

S =
1
2

�
d4x a(t)3

�
M2

p R + φ̇2 −m2φ2
�
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Independent equation for each Fourier mode:
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The three-point 
(Bispectrum)

• Generically:

• Slow-roll result (Aquaviva et al; Maldacena)

�ζ(k1)ζ(k2)ζ(k3)� = (2π)3δ3
D(k1 + k2 + k3)B(k1,k2,k3)
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The three-point 
(Bispectrum)

• Generically:

• Slow-roll result

S3 = M2
p

�
d4x �2[a3ζ̇2ζ + a(∂ζ)2ζ] + . . .

(Aquaviva et al; Maldacena)

�ζ(k1)ζ(k2)ζ(k3)� = (2π)3δ3
D(k1 + k2 + k3)B(k1,k2,k3)
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The three-point 
(Bispectrum)

• Generically:

• Slow-roll result
“fNL”

S3 = M2
p

�
d4x �2[a3ζ̇2ζ + a(∂ζ)2ζ] + . . .

(Aquaviva et al; Maldacena)

�ζ(k1)ζ(k2)ζ(k3)� = (2π)3δ3
D(k1 + k2 + k3)B(k1,k2,k3)

�ζ(k1)ζ(k2)ζ(k3)� = (2π)3δ3
D(k1 + k2 + k3)P2

ζO(�)A(k1,k2,k3)

Thursday, October 27, 2011



Shandera; RPM; Oct 27, 2011

fNL ∼ 0.05� 5 ∼ 5� O(100)� 109/2

How Non-Gaussian is 
that?
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fNL ∼ 0.05� 5 ∼ 5� O(100)� 109/2

How Non-Gaussian is 
that?

Slow-roll

Gravitational Evolution

Very non-Gaussian

Planck potential
Current Constraints
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fNL ∼ 0.05� 5 ∼ 5� O(100)� 109/2

How Non-Gaussian is 
that?

Slow-roll

Gravitational Evolution

Very non-Gaussian

Planck potential
Current Constraints

 Lots of room for discovery

 Detection now rules out 99% of models
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the Local Ansatz

• One parameter: �ζn� ∝ fn−2
NL Pn−1

ζ

Negatively skewed Positively skewed

fNL =±0.1

σ2 = 1

δ
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the Local Ansatz

• One parameter: �ζn� ∝ fn−2
NL Pn−1

ζ

Negatively skewed Positively skewed

fNL =±0.1

σ2 = 1

δ

• Easy for N-body simulations (defined 
from a real space Gaussian)
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More Generally...

• Interactions that don’t screw up 
inflation are allowed:

Self-interactions with symmetry
Multi-field inflation
Interactions with spectator fields

• Different interactions     Different 
shapes in bispectrum

⇒
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3-point triangles

• Squeezed

• Equilateral

δ3
D(k1 + k2 + k3)⇒

�k1

�k3

�k2

�k2

�k1

�k3

(Babich, Creminelli, 
Zaldarriaga;)

�k1
�k2

�k3
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Why all the excitement?
Data!

Sloan (SDSS)
f local

NL : 32± 21

f equil
NL : 26± 140

forthog
NL : −202± 104

WMAP 7
−29 < f local

NL < 69

(all 1 σ; Komatsu et al; 
Slosar et al)
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Why all the excitement?
Data!

Sloan (SDSS)
f local

NL : 32± 21

f equil
NL : 26± 140

forthog
NL : −202± 104

WMAP 7
−29 < f local

NL < 69

(all 1 σ; Komatsu et al; 
Slosar et al)

A lot going on behind one number...
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Ways to Measure 
Interactions

• n-point functions (CMB, LSS)
• detailed shapes distinguish 

interactions
• non-linear effects in LSS: halo bias

• sensitive to just some correlations
• other statistics: cluster number counts
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Ways to Measure 
Interactions

• n-point functions (CMB, LSS)
• detailed shapes distinguish 

interactions
• non-linear effects in LSS: halo bias

• sensitive to just some correlations
• other statistics: cluster number counts

When are we convinced the theory 
beats just setting initial conditions?
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Example: Symmetry for the 
Inflaton

(Freese; Silverstein, Westphal; Barnaby, Peloso; Anber, Sorbo; 
Chen et al; Flauger, Pajer; Leblond, Pajer) 

φ→ φ + c

Standard Model: Any allowed interactions 
appear....
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(∂ϕ)2 − 1

4f
ϕGaG̃a − α

4f
ϕFF̃ +

∞�

n=1

cn
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(Freese; Silverstein, Westphal; Barnaby, Peloso; Anber, Sorbo; 
Chen et al; Flauger, Pajer; Leblond, Pajer) 

What we are after is patterns....

φ→ φ + c

New mass scale, f
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Small Sound Speed

Example: Symmetry for the 
Inflaton

L0 = −1
2
(∂ϕ)2 − 1

4f
ϕGaG̃a − α

4f
ϕFF̃ +

∞�

n=1

cn
(∂ϕ)2n+2

f4n
+ · · ·

+Vex(ϕ) + µ4

�
1− b cos

�
ϕ

f

��

(Freese; Silverstein, Westphal; Barnaby, Peloso; Anber, Sorbo; 
Chen et al; Flauger, Pajer; Leblond, Pajer) 

What we are after is patterns....
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Small Sound SpeedResonant terms

Example: Symmetry for the 
Inflaton
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What we are after is patterns....
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Small Sound Speed
Feeder field

Resonant terms

Example: Symmetry for the 
Inflaton

L0 = −1
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(∂ϕ)2 − 1
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(Freese; Silverstein, Westphal; Barnaby, Peloso; Anber, Sorbo; 
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Each interaction has a 
different signature

Resonant terms

Small Sound Speed

Feeder field

Brane Inflation Fame
Equilateral Bispectrum

Bispectrum has oscillating 
amplitude

Equilateral Bispectrum
Moments Scale Differently
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(At least) Two equilateral 
types

(Barnaby, Shandera; 1109.2985) 
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(At least) Two equilateral 
types

• Distinguishable by scaling behavior:

(Barnaby, Shandera; 1109.2985) 

Mn ∼ �ζn�
(�ζ2�)n/2

Mn ∝
�
IP1/2

ζ

�n−2
Hierarchical:

Mn ∝ InFeeder:

I ∝ c−2
s ∝ fNL

δA
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Different Scaling?

• Relative importance of higher order 
moments is greater for fixed amplitude of 
three point

• Skewness isn’t everything...

σ

δ

δ

fNL > 0fNL < 0
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5.0� 1014 1.0� 1015 1.5� 1015
M �h�1 Msun�

1.5

dn � dM
dn � dMGauss

z�0.5

feq
NL = 250

feq
NL = 100

1rst order NG

2nd, hierarch.

2nd, feeder

3rd, feeder

NG Mass Function

What can we learn from rare objects?
(Barnaby, Shandera; 1109.2985) 
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Distinguishing Multi-
Field models

• Break correlation between background 
evolution and fluctuations

• Anything goes?
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Field models

• Break correlation between background 
evolution and fluctuations

• Anything goes?

Multi-field        Local shape         Halo Bias
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Distinguishing Multi-
Field models

• Break correlation between background 
evolution and fluctuations

• Anything goes?

Multi-field        Local shape         Halo Bias

−29 < f local
NL < 69

(Slosar et al) 
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Local Non-Gaussianity 
and bias

• Correlation between long and short 
modes: enhanced clustering
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Local Non-Gaussianity 
and bias

• Correlation between long and short 
modes: enhanced clustering

Phm(k) = b(M,fNL, k)Pmm(k)

Thursday, October 27, 2011



Shandera; RPM; Oct 27, 2011

Local Non-Gaussianity 
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• Correlation between long and short 
modes: enhanced clustering

Phm(k) = b(M,fNL, k)Pmm(k)

Phm(k) = [bG(M) + ∆b(fNL, k, M)]Pmm(k)
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Local Non-Gaussianity 
and bias

• Correlation between long and short 
modes: enhanced clustering

Phm(k) = b(M,fNL, k)Pmm(k)

Phm(k) = [bG(M) + ∆b(fNL, k, M)]Pmm(k)

• Local density and local      determine 
where halos form

σ8
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Non-Gaussian Bias

• Effect was discovered in an N-body 
simulation:

Φ(x) = ΦG(x) + fNL[Φ2
G(x) − �Φ2

G(x)�]

(Shandera, Dalal, Huterer 1010.3722) 

(Dalal et al 0710.4560) 
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• Effect was discovered in an N-body 
simulation:

Φ(x) = ΦG(x) + fNL[Φ2
G(x) − �Φ2

G(x)�]

• Generalize to match particle physics 
models:
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Scale-Dependence? 
Type I (multi-field)

• Two or more fields contribute to curvature:

(Erickcek, Hirata, Kamionkowski)
(Wands et al; Byrnes et al; Byrnes, Wands)
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Scale-Dependence? 
Type I (multi-field)

• Two or more fields contribute to curvature:

(Erickcek, Hirata, Kamionkowski)

ΦNG = φG + σG + f̃NL(σ2
G − �σ2

G�)

(Wands et al; Byrnes et al; Byrnes, Wands)
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Scale-Dependence? 
Type I (multi-field)

• Two or more fields contribute to curvature:

(Erickcek, Hirata, Kamionkowski)

ΦNG = φG + σG + f̃NL(σ2
G − �σ2

G�)

Scale-dependence 
from changing 
ratio of 
contribution to Pζ

ξ =
Pζ,σ(k)

Pζ,φ(k) + Pζ,σ(k)

fNL(k) = f̃NLξ2(k) }
(Wands et al; Byrnes et al; Byrnes, Wands)

Thursday, October 27, 2011



Shandera; RPM; Oct 27, 2011

Scale-Dependence? 
Type I (multi-field)

• Two or more fields contribute to curvature:

(Erickcek, Hirata, Kamionkowski)

ΦNG = φG + σG + f̃NL(σ2
G − �σ2

G�)

ξ =
Pζ,σ(k)

Pζ,φ(k) + Pζ,σ(k)

fNL(k) = f̃NLξ2(k) }
(Wands et al; Byrnes et al; Byrnes, Wands)

nf ≤ −(ns − 1) ∼ 0.1
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Scale-Dependence? 
Type I (multi-field)

• Two or more fields contribute to curvature:

(Erickcek, Hirata, Kamionkowski)

ΦNG = φG + σG + f̃NL(σ2
G − �σ2

G�)

ξ =
Pζ,σ(k)

Pζ,φ(k) + Pζ,σ(k)

fNL(k) = f̃NLξ2(k) }
(Wands et al; Byrnes et al; Byrnes, Wands)

nf ≤ −(ns − 1) ∼ 0.1

Bm
Φ (k1,k2,k3) = ξm(k1)ξm(k2)PΦ(k1)PΦ(k2) + 5 perm
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Scale-Dependence? 
Type II (single-field)

• A non-Gaussian (non-inflaton!) field alone 
generates curvature perturbations:

 - and -
• The field has self-interactions beyond quadratic

Bs
Φ(k1,k2,k3) = ξs(k3)PΦ(k1)PΦ(k2) + 5 perm

So, all together:
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Scale-Dependence? 
Type II (single-field)

• A non-Gaussian (non-inflaton!) field alone 
generates curvature perturbations:

 - and -
• The field has self-interactions beyond quadratic

Bs
Φ(k1,k2,k3) = ξs(k3)PΦ(k1)PΦ(k2) + 5 perm

BΦ(k1,k2,k3) = ξs(k3)ξm(k1)ξm(k2)PΦ(k1)PΦ(k2) + 5 perm .

So, all together:
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How Natural?

• Theoretically, are multiple fields 
likely?? Hard to say, but:

• IF we find observably large local non-
Gaussianity, as natural as the spectral 
index different from one

• IF we are constraining local non-
Gaussianity, this is more honest
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NG bias, generalized

• Effect of local and generalized local NG:
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NG bias, generalized

∆bNG(k,M, fNL) ∝ fNL

k2

(N. Dalal et al)

• Effect of local and generalized local NG:
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NG bias, generalized

∆bNG(k,M, fNL) ∝ fNL

k2

(N. Dalal et al)

• Effect of local and generalized local NG:

(S. Shandera et al; 
Desjacques et al)

feff
NL (M,n(s)

f , n(m)
f )

k2−n(m)
f
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∆bNG(k,M, fNL) ∝ fNL

k2

(N. Dalal et al)

• Effect of local and generalized local NG:

• Simulations and theory now agree

(S. Shandera et al; 
Desjacques et al)

feff
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NG bias, generalized

∆bNG(k,M, fNL) ∝ fNL

k2

(N. Dalal et al)

• Effect of local and generalized local NG:

• Simulations and theory now agree

LSST can distinguish multi-field models at 
level comparable to spectral index!

(S. Shandera et al; 
Desjacques et al)

feff
NL (M,n(s)

f , n(m)
f )

k2−n(m)
f

Thursday, October 27, 2011



Shandera; RPM; Oct 27, 2011

Simulation Results

14 14.5 15
log10 [M / (h-1Msun)]

0

1

2

3

4

5
b(

n f) /
 

b(
n f=0

)
z=0 simulation
z=1 simulation
theoretical prediction

nf
(s)= -0.6

nf
(s)= +0.6
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Shandera, 10 April 2011,TAMU

Distinguishing Between the 
effects (Stronger than this!)

-1 -0.5 0 0.5 1

nf
(s)

-0.5

0

0.5

n f(m
)

LSST

DESUsing 
old, 

wrong, 
analytic 
ansatz!
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BIAS AND OTHER 
COMMON bispectra

• Local
• Folded
• Equilateral
• Quasi Single Field
• Generic: 
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• Quasi Single Field
• Generic: 
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1
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1
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∆bNG ∝ k0

Thursday, October 27, 2011



Shandera; RPM; Oct 27, 2011

BIAS AND OTHER 
COMMON bispectra

• Local
• Folded
• Equilateral
• Quasi Single Field
• Generic: 

∆bNG ∝
1
k2 ∆bNG ∝

1
k

∆bNG ∝ k0

∆bNG ∝
1

k(3/2+ν)−1

(X. Chen, Y. Wang)
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BIAS AND OTHER 
COMMON bispectra

• Local
• Folded
• Equilateral
• Quasi Single Field
• Generic: 

∆bNG ∝
1
k2 ∆bNG ∝

1
k

∆bNG ∝ k0

B(k1, k2 � k3) ∝
1

kpdiv
3

If:

Then: ∆bNG ∝
k3−pdiv

k2

∆bNG ∝
1

k(3/2+ν)−1

(X. Chen, Y. Wang)
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Forecasts

Table compiled by Licia Verde

Future: Large Scale Structure
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 And if Inflation 
is not

This picture?
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other approaches
• If we see no non-Gaussianity, no 

tensors...what then? 
• Or, what if we see a bizarre pattern?
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other approaches

• Model fluctuations alone: Effective Field 
theory for the fluctuations (Cheung et al: 0709.0293) 

• If we see no non-Gaussianity, no 
tensors...what then? 

• Or, what if we see a bizarre pattern?
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other approaches

• Model fluctuations alone: Effective Field 
theory for the fluctuations (Cheung et al: 0709.0293) 

• Or, parametrize sensitivity of data? Find 
a basis for higher order correlation 
functions (Fergusson and Shellard) 

• If we see no non-Gaussianity, no 
tensors...what then? 

• Or, what if we see a bizarre pattern?
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Summary:
 Observations care about interactions
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Summary:
 Observations care about interactions
If the standard picture is right:

• Enormous potential to discriminate models

• Look for patterns in correlation fcns

• Surprising signatures in LSS 

• Need more simulations!
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Summary:

 A new push to understand (quasi) de Sitter 
space (if we see no tensors, no NG?)

Observables tell us what’s physical

 Observations care about interactions
If the standard picture is right:

• Enormous potential to discriminate models

• Look for patterns in correlation fcns

• Surprising signatures in LSS 

• Need more simulations!
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